
V
f

X
M
a

B
b

N
c

a

A
R
R
A
A

K
A
A

r
g
s
q
r

1
d

Journal of Molecular Catalysis A: Chemical 319 (2010) 114–118

Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journa l homepage: www.e lsev ier .com/ locate /molcata

irtual screening prediction of new potential organocatalysts
or direct aldol reactions

iang Hui Liua, Hong Yan Songb,c, Xiao Hua Maa,
artin J. Learb, Yu Zong Chena,∗

Bioinformatics and Drug Design Group, Centre for Computational Science and Engineering, National University of Singapore,
lk S16, Level 8, 3 Science Drive 2, Singapore 117543, Singapore1

Department of Chemistry, Faculty of Science, and Medicinal Chemistry Group of the Life Sciences Institute,
ational University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602, Singapore

r t i c l e i n f o

rticle history:
eceived 30 July 2009
eceived in revised form 6 December 2009
ccepted 16 December 2009

a b s t r a c t

A support vector machine (SVM)-based virtual screening method is demonstrated as a rapid computa-
tional tool for the prediction of potential asymmetric organocatalysts for the direct aldol reaction. Our
models show good accuracy at cross-validation and independent testing. Structure analyses of screening
hits from the PubChem database revealed several new classes of compounds, including �-amino acids,
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diamines and hydrazides, as potential chiral organocatalysts.
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1. Introduction

Organocatalysts have emerged as robust, inexpensive, read-
ily available and non-toxic catalysts for asymmetric synthesis.
Most organocatalysts have been discovered through serendipity
or through empirical trial and error. Today computational meth-
ods are rapidly becoming a versatile tool for the rationalization
and prediction of organocatalysts [1]. A computational model that
is capable of evaluating large compound libraries at high speed
and guiding the discovery of new types of organocatalysts, is
highly desirable in the rational design of organocatalysts. Quan-
tum mechanics (QM) is a well recognized computational method
for organocatalyst design, which has successfully confirmed the
enamine mechanism for proline catalysis of directed aldol reac-
tions [2–9]. QM, however, is highly consuming of computational

esources, requiring months to evaluate a compound library. This
reatly limits its general use. To reduce computational times,
everal alternative methods have been developed. These include
uantitative structure selectivity relationships (QSAR) [10–12],
everse docking [13], and the asymmetric catalyst evaluation (ACE)
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program [14]. QSAR works well only for same series of compounds
to the known classes of organocatalysts. The other two methods
are based on molecular mechanic (MM) techniques and need addi-
tional assumptions or simplifications which might always be true
[1].

Herein, we describe a new machine learning approach termed
Support Vector Machine (SVM)-based virtual screening method.
SVM is a ligand-based machine learning method based on statis-
tical learning theory [15], which has consistently delivered good
predictions in the area of drug design. In drug discovery and
organocatalyst design, a common problem in SVM-based screening
studies is the lack of negative compounds. This causes an imbal-
ance between positive and negative compounds in the dataset and
frequently leads to a high false positive rate for dataset screen-
ing [16–22]. As a solution to this problem, we have developed a
new putative negative-generation process to specifically augment
the negative datasets (the putative negatives) [23,24]. Studies have
shown that SVM classification models derived from such puta-
tive negatives can perform reasonably well in virtual screening
studies [23–28]. For this study, the organocatalytic aldol reac-
tion was chosen as a model system because of its importance in

asymmetric carbon–carbon bond formation in organic synthesis.
Being well documented in the organocatalysis field, the asymmet-
ric aldol reaction was anticipated to offer new insights into similar
reactions that share common enamine-type catalytic intermedi-
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ates. Herein, we tested the SVM-based virtual screening method
as a rapid screening tool for the identification of new, potential
organocatalysts for the direct aldol reaction.

Known organocatalysts that form asymmetric enamine inter-
mediates in the direct, intermolecular aldol reaction may be
classified into the following classes: proline and amide analogs (1a
and 1b), non-proline amino acid and amide analogs (2a and 2b),
diamines (3a–g), proline-tetrazoles (4), phosphoric-prolines (5), �-
amino acids (6), binaphthyl analogs (7), simple amines (8a–c) and
imidazolidinones (9) (Fig. 1). Our work was divided into two stud-
ies. In Study 1, we validated the SVM approach to organocatalyst
design, whereby a model was built based on the known amino acid
and amide analogs (Class 1 and Class 2 compounds). The predic-
tive ability of this model was then tested against other classes of
organocatalysts (Fig. 1). In Study 2 we next investigated what new
classes could be identified with a model built on all currently known
classes.

2. Materials and methods

In total, 195 unique organocatalysts that displayed an ee
over 30% were collected from over 60 papers (see structures in
supporting information 1). They were divided into a training set
(156 organocatalysts reported before June 2007) and an indepen-
dent testing set (39 organocatalysts reported after June 2007).

Among the 156 organocatalysts in the training set, 117 belonged to
Class 1 and Class 2. They were used as positives (organocatalysts)
for the training set in Study 1, while all 156 organocatalysts were
used as positives for the training set in Study 2. As anticipated, there

Fig. 1. Examples of known organocatalysts
ysis A: Chemical 319 (2010) 114–118 115

were few negatives (non-organocatalysts) being reported in the
literature. Virtual negatives were thus generated using our puta-
tive negative-generation method [23,24]. The whole process can
be divided into five main steps.

First, the PubChem 13.6 M compounds were calculated with 100
2D descriptors and clustered using the K-means method to repre-
sent the whole chemical space. The 100 2D descriptors include:
molecular weight; the number of atoms, bonds, rings, H-bond
donor/acceptors, rotatable bonds, N or O heterocyclic rings; the
number of C, N and O atoms; the charge polarization; and the Kier
shape index (see supporting information 2). The K value of the com-
pound clusters was set as 9000. This K value is consistent with
the 12,800 compound-occupying neurons (regions of topologically
close structures) for 26.4 million compounds of up to 11 atoms of C,
N, O, F [29], as well as the 2851 clusters for 171,045 natural products
[30]. The final number of clusters was 8423 after the K-means clus-
tering. Second, the known positives were mapped to the clusters.
Those clusters containing known positives were defined as active
families. Other clusters were defined as non-active families. The
putative negatives were generated by taking eight representative
samples from each of the non-active families. Third, the software
LibSVM was chosen to perform the machine learning. Non-linear
SVM separates the positives from the negatives with a hyperplane
by mapping the input vectors to a higher dimensional feature space
using a kernel function (Fig. 2). The Radial Basis Function (RBF) ker-

nel, widely adopted to consistently give better performance, was
used in this study. Optimally, the hard margin SVM (c = 100,000)
was used with a � scan between 0 and 15 for best performance,
as determined from the fivefold cross-validation results. Fourth, a

for direct intermolecular aldol reaction.
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Fig. 2. SVM separation of positive and negative datasets.

odel was built with all training compounds at this �. The model
as then tested using the independent testing set. Fifth and finally,

he PubChem database was screened.

. Results and discussion

The SVM results are summarized in Table 1. In the five-
old cross-validation test, � values were found to be 0.2 and
.7 for Studies 1 and 2, respectively, whereby the SVM models
ave prediction accuracy values averaging 70.2% and 71.8% for
rganocatalysts and averaging 99.9% for non-organocatalysts (see
upporting information 2). This confirmed the quality of our mod-
ls for virtual screening. Moreover, the independent test, using
9 unique organocatalysts reported after June 2007, showed 41%
nd 64% accuracy. Screening of the 13.6 M PubChem compounds
evealed 16,996 and 24,714 compound hits. This constituted 0.125%
nd 0.182% of the whole PubChem database, respectively. To
ndergo enamine catalysis, organocatalysts should be primary or
econdary chiral amines capable of reacting with carbonyl groups.
hus, achiral compounds were first removed, which reduced the hit
umbers to 10,847 and 13,688; compounds possessing no primary
r secondary amine group were then removed, which reduced the
it numbers to 7284 and 10,471 for Studies 1 and 2, respectively.

To understand the virtual screening results, structure-class anal-
sis was carried out to determine the structural types of the
creening hits. The number of substructure query hits served as a
ough evaluation of the potential of this structure-class analysis as
rganocatalysts. The screening results of various structure-classes
Fig. 1) are listed in Table 2. Although being built exclusively on
lasses 1 and 2 organocatalysts, our structure analysis from model
tudy 1 showed a clear predictive ability for most other classes of
rganocatalysts. Hits of all these nine classes (Nos. 1–19) comprise
p to 70% of the hits of Study 1. The diamine (Nos. 5–11), �-amino
cid (No. 14) and amine (Nos. 16–18) classes presented the greatest

umber of hits, besides Classes 1 and 2. This result clearly validated
ur SVM-based virtual screening method as a useful tool that can
eliably predict new classes of organocatalysts; however, our model
ailed to predict the proline-tetrazole (No. 12) and some diamines

able 1
esults of SVM-based virtual screening models.

No. Training dataset Fivefold cross-validation

Pa Nb SEc (%) SP

1 117 66646 70.2 99
2 156 66470 71.8 99

a Number of positives (organocatalysts).
b Number of putative negatives (non-organocatalysts).
c Average sensitivity (the prediction accuracy for organocatalyst) of fivefold cross-vali
d Average specificity (the prediction accuracy for non-organocatalyst) of fivefold cross
e Prediction result of independent test set.
f Number of screening hits of PubChem 13.6 M compounds.
g Number of virtual hits after clean-up.
sis A: Chemical 319 (2010) 114–118

(Nos. 7, 8 and 11) as organocatalysts. This latter observation may
due to the practical requirement of adding acid during the syn-
thetic use of these organocatalysts, whereby ammonium species
form strong hydrogen bonds to the aldehyde carbonyl group.

In Study 1, the model generated was further used to evaluate
various other substructure types (Nos. 20–28) previously not stud-
ied or largely unstudied in practice. The detailed results are listed in
Table 2. The majority of the predictions were consistent with prac-
tical experimental reports: the cyclohexane-1,2-diamines (No. 20)
are active organocatalysts, while their sulphanamide (No. 21) and
amide or substituted analogs (No. 22) are not [31]; small groups
like methyl (No. 23) are allowed [32], yet large groups like naph-
thyl (No. 24) are not favored for �-substituted proline analogs [33];
proline-tetrazole analogs like the proline benzimidazoles (No. 25)
and amino acid tetrazoles are also active [34–36]. Importantly, our
models predicted two new types of �-amino acids (Nos. 26 and
27) as being potentially active in the catalytic asymmetric aldol
reaction. Although there are no experimental reports of these two
types for aldol reaction, they have been reported as organocata-
lysts of two similar reactions. The �-amino acids 2 (No. 26) catalyze
the Hajos–Parrish–Eder–Sauer–Wiechert reaction [37], and the �-
amino acids 3 (No. 27) act as organocatalysts of the Mannich
reaction [38]. These two types of reactions share similar enamine
catalysis mechanisms to the proline-catalyzed aldol reaction. Like
for the proline-tetrazole and diamines, the proline-pyrimidine (No.
28) was falsely predicted [39], probably due to the requirement for
ammonium hydrogen-bonding in the predominating catalytic step.
Collectively, these structure-class analyses demonstrate our mod-
els as a useful means to guide the discovery of new organocatalysts.

In Study 2, our SVM-based virtual screening method was applied
to build a model based on all currently known 9-classes of com-
pounds. As shown in Table 2, about 60% of all hits belonged to
the known classes. The remaining hits were structural new, but
similar to the known classes listed in Fig. 1 (see structural exam-
ples in supporting information 2). Fig. 1 illustrates multiple types
of substructures (as marked in blue). For enamine-based catalytic
activity, an amine group is a clear prerequisite. To ensure asym-
metric catalysis, however, there should be additional interactions
(e.g. hydrophobic, hydrogen bonding or even steric interactions)
between the homochiral organocatalyst and the reacting carbonyl
compound to generate a predominant diastereomeric complex. We
believe that the success of our models stemmed from the chosen
descriptors and the reliability of our putative negative-generation
method. Specifically, SVM classifies compounds based on the dis-
criminative properties as represented by descriptors between
organocatalysts and non-organocatalysts, rather than purely on
structural similarities or substructure motifs. It is difficult to unam-
biguously define which particular descriptor sub-set of the 100

2D descriptors is exactly responsible for the asymmetric catalysis.
However, several descriptors, including the number of hydrogen
bond donors and acceptors, number of amine groups, hydrophobic
effects, and molecular shape, all play an important role in describing

Virtual screening performance

d (%) Inde (%) Virtual hitsf Final hitsg

.9 41 16,996 7284

.9 64 24,714 10,471

dation.
-validation.
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Table 2
Structure-class analysis.

No. Structure-class Example structurea Study

1 2

1 Proline-acid 1a 234 288
2 Proline-amide 1b 319 316
3 Amino acid 2a 2406 2172
4 Amino acid amide 2b 820 617
5 Diamine 3a 5 30
6 Diamine 3b 96 160
7 Diamine 3c 0 53
8 Diamine 3d 0 1
9 Diamine 3e 18 521

10 1,2-Diphenyl-ethane-1,2-diamine 3f 7 77
11 Cyclohexane-1,2-diamine 3g 0 5
12 Proline-tetrazole 4 0 3
13 Proline-phosphate 5 2 3
14 �-Amino acid 1 6 328 371
15 Binaphthyl analogs 7 0 0
16 Simple amine 1 8a 703 873
17 Simple amine 2 8b 43 29
18 Simple amine 3 8c 9 20
19 Imidazolidinone 9 0 0

20 Cyclohexane-1,2-diamine 5 180

21 Cyclohexane-1,2-diamine sulphanamide 0 0

22 Cyclohexane-1,2-diamine amide 1 0

23 �-Substituted proline (methyl) 24 26

24 �-Substituted Proline (phenyl) 0 0

25 Proline-tetrazole analogs 2 13

26 �-amino acid 2 13 15

27 �-amino acid 3 1 32

28 Nicotine 0 0

a Example structures 1a–9 are shown in Fig. 1.
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the discriminative features between organocatalysts and non-
organocatalysts. From this study, we also know that descriptors
defining chirality and amine-functionality are particularly useful
for enamine-type catalysis and shall be added to our descrip-
tor list in the future. Moreover, the putative negatives method
of generation ensures that diverse types of non-organocatalysts
will be enumerated across the whole chemistry space of PubChem,
whereby our SVM model has great potential to remove the non-
organocatalysts.

4. Conclusions

We demonstrate a new SVM-based virtual screening method
for the rapid screening of organocatalysts from a large compound
library (PubChem). Our study validates this method as a conve-
nient way to identify potential organocatalysts in a good hit-yield,
low false hit rate, and in a timely, low-resource manner. While
being capable of expanding current collections of organocatalysts,
our method shows promise in the identification of new structural
types of organocatalysts. Several types of screening hits includ-
ing �-amino acids, diamines and hydrazides are anticipated to
serve as good lead structures for future Aldol studies in both a
computational (QM) and practical (synthetic) sense. Moreover, the
identified screening hits also posses potential in reactions, includ-
ing the Mannich, �-amination, �-aminooxylation, and the Morita
Baylis-Hillman reactions, all of which share a common enamine-
type catalysis mechanism to the aldol reaction. Since descriptors
can be readily customized to known catalytic mechanisms and pro-
posed catalytic complexes, we anticipate our SVM-based virtual
screening method to find wide applicability in asymmetric synthe-
sis and organocatalyst design.
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